Rabu, 06 Mei 2015

SISTEM AIR PENDINGIN

JENIS SISTEM AIR PENDINGIN

Berdasarkan siklusnya, terdapat 2 macam sistem air pendingin utama yang lazim diterapkan di PLTU yaitu : 
sistem siklus terbuka (once through)
sistem siklus tertutup (recirculation – cooling tower).
Pada umumnya sistem air pendingin utama terdiri dari komponen :
Intake (untuk sistem air pendingin siklus terbuka)
Saringan (screen)
Pompa (cooling water pump – CWP)
Katup dan Pemipaan (piping)
Menara pendingin (cooling tower)
Untuk sistem air pendingin siklus terbuka tidak dilengkapi dengan menara pendingin (cooling tower), sebaliknya pada sistem siklus tertutup (resirkulsi) tidak dibutuhkan intake yang dipasangi saringan-saringan, cukup dengan satu saringan sederhana.






Prinsip kerja mesin stirling

Mesin Stirling didefinisikan sebagai mesin regenerasi udara panas siklus tertutup. Dalam konteks ini, siklus tertutup berarti bahwa fluida kerjanya secara permanen terkurung di dalam system. Mesin stirling adalah mesin kalor yang unik karena efisiensi teoretisnya mendekati efisiensi teoretis maksimum, yang lebih dikenal dengan efisiensi mesin carnot. Mesin stirling ditemukan tahun 1816 oleh Robert Stirling (1790-1878). Saat itu disebut mesin udara dengan model mesin pembakaran luar siklus tertutup.

Mesin stirling bekerja karena adanya ekspansi gas ketika dipanaskan dan diikuti kompresi gas ketika didinginkan. Mesin itu berisi sejumlah gas yang dipindahkan antara sisi dingin dan panas terus-menerus. Perpindahan gas ini dimungkinkan karena adanya piston displacer yang memindahkan gas antara dua sisi dan piston power mengubah volume internal karena ekspansi dan kontraksi gas. Piston yang berpindah disebut sebagai regenerator yang dapat membangkitkan kembali udara.

Prinsip kerja mesin stirling adalah memanfaatkan adanya perubahan tekanan dan volume pada gas dalam system tertutup. Gas pada sisitem dikontakan pada reservoir panas sehingga system menyerap panas. Panas yang dihasilkan disimpan di dalam sebuah regenerator. Akibat adanya panas ini menyebabkan volume gas bertambah. Karena system dalam keadaan tertutup maka tidak ada gas yang keluar sehingga pertambahan volume gas karena pemanasan menimbulkan perubahan tekanan yang cukup besar. Tekanan yang dihasilkan ini kemudian digunakan untuk menggerakan piston. Sementara itu gas penggerak menyusup ke ruangan yang dingin, dengan melepas panas pada saat bersamaan. Karena penurunan suhu ini volume gas berkurang dan sisitem menerima kerja kompresi yang menyebabkan volume gas kembali ke keadaan awal. Keadan tersebut terjadi berulang secara periodik sehingga terjadi gerakan piston yang dapat dimanfaatkan sebagai pembangkit listrik dengan menghubungkannya ke turbin.




RADIASI

Radiasi yang dipancarkan alam dapat dikelompokkan menjadi tiga jenis yaitu radiasi kosmis, radiasi terestrial, dan radiasi internal. Radiasi kosmik beradal dari sumber radiasi yang berada pada benda langit dalam tata surya dalam bentuk partikel berenergi tinggi (sinar kosmis); dan sumber radiasi yang berasal dari unsur radioaktif di dalam kerak bumi yang terbentuk sejak terjadinya bumi.Radiasi internal adalah radiasi yang diterima oleh manusia dari dalam tubuh manusia sendiri, dalam hal ini sumber radiasi masuk ke dalam tubuh manusia melalui makanan, minuman atau udara. 
Radiasi kosmis
Sinar kosmis yang berupa partikel akan bereaksi dengan atmosfir bumi menghasilkan tritium, berilium dan carbon yang radioaktif. Tak seorangpun luput dari guyuran radiasi ini meskipun jumlahnya berbeda-beda berdasarkan lokasi dan ketinggian.
Karena medan magnet bumi mempengaruhi radiasi ini, maka orang di kutub menerima lebih banyak daripada yang ada di katulistiwa. Selain itu orang yang berada di lokasi yang lebih tinggi akan menerima radiasi yang lebih besar karena semakin sedikit lapisan udara yang dapat bertindak sebagai penahan radiasi. Jadi, orang yang berada di puncak gunung akan menerima radiasi yang lebih banyak daripada yang di permukaan laut. Orang yang bepergian dengan pesawat terbang juga menerima lebih banyak radiasi. 
Radiasi terestrial
Bahan radioaktif utama yang ada dalam kerak bumi adalah Kalium-40, Rubidium-87, unsur turunan dari Uranium-238 dan turunan Thorium-232. Besarnya radiasi dari kerak bumi ini berbeda-beda karena konsentrasi unsur-unsur di tiap lokasi berbeda, tetapi biasanya tidak terlalu berbeda jauh. Penelitian di Perancis, Jerman, Italia, Jepang dan Amerika Serikat menunjukkan bahwa kira-kira 95 persen populasi tinggal di daerah dengan tingkat radiasi rerata dari bumi antara 0,3-0,6 milisievert per tahun (bandingkan: nilai batas dosis pekerja radiasi adalah 50 milisievert per tahun, untuk masyarakat umum 5 milisievert per tahun). Sekitar tiga persen populasi dunia menerima dosis 1 milisievert per tahun atau lebih. 
Radiasi internal
Manusia juga menerima pancaran radiasi dari dalam tubuhnya sendiri. Unsur radioaktif ini kebanyakan berasal dari sumber kerak bumi yang masuk melalui udara yang dihirup, air yang diminum ataupun makanan. Unsur yang meradiasi manusia dari dalam ini kebanyakan berupa tritium, Carbon-14, Kalium-40, Timah Hitam (Pb-210) dan Polonium-210. Radiasi internal ini umumnya merupakan 11% total radiasi yang diterima seseorang.
Penduduk di tempat paling utara di bumi menerima radiasi internal dari Polonium-210 kira-kira 35 kali nilai rata-rata dari daging kijang yang mereka makan. Penduduk di daerah Australia Barat yang kaya dengan uranium menerima radiasi internal kira-kira 75 kali nilai rata-rata dari daging domba, kangguru dan offal yang mereka konsumsi.
Seseorang yang ada di dalam gedung atau rumah dapat menerima radiasi dari sumber yang ada dalam bahan bangunan. Sumber radiasi yang terutama di sini adalah radon yang merupakan gas turunan peluruhan Uranium-238 dan Thorium-232. Yang berbahaya dari gas radon ini adalah anak turunannya yang akhirnya menjadi timah hitam yang stabil. Di daerah yang beriklim dingin, konsentrasi radon di dalam rumah bisa lebih tinggi daripada di luar, akan tetapi di daerah tropis konsentrasi di dalam maupun di luar bisa sama (karena kondisi rumah yang terbuka). Radiasi yang diterima dari radon ini kira-kira 50% dari total radiasi yang diterima dari alam.

Radiasi dari tindakan medis
Radiasi dari tindakan medis merupakan radiasi yang berasal dari sumber buatan manusia, jadi sesungguhnya bukan merupakan radiasi dari alam. Radiasi dari tindakan medis ini dituliskan di sini sebagai pembanding.
Dalam bidang kedokteran radiasi digunakan sebagai alat pemeriksaan (diagnosis) maupun penyembuhan (terapi). Pesawat sinar-X atau Roentgen merupakan alat diagnosis yang paling banyak dikenal dan dosis radiasi yang diterima dari roentgen ini merupakan dosis tunggal (sekaligus) terbesar yang diterima dari radiasi buatan manusia. Dalam sekali penyinaran sinar-X ke dada, seseorang dapat menerima dosis radiasi total sejumlah 35-90 hari jumlah radiasi yang diterima dari alam. Penyinaran sinar-X untuk pemeriksaan gigi memberikan dosis total kira-kira 3 hari jumlah radiasi yang diterima dari alam. Penyinaran radiasi untuk penyembuhan kanker nilai dosisnya kira-kira ribuan kali dari yang diterima dari alam.
Meskipun dosis radiasi yang diterima dari kedokteran ini cukup tinggi, orang masih mau menerimanya karena nilai manfaatnya jauh lebih besar daripada resikonya. 
Radiasi dari reaktor nuklir
Banyak orang beranggapan bahwa tinggal di sekitar pembangkit listrik tenaga nuklir akan menyebabkan terkena radiasi yang tinggi. Meskipun di dalam reaktor terdapat banyak sekali unsur radioaktif, tetapi sistem keselamatan reaktor membuat jumlah lepasan radiasi ke lingkungan sangat kecil. Dalam kondisi normal, seseorang yang tinggal di radius 1-6 km dari reaktor menerima radiasi tambahan tak lebih daripada 0,005 milisievert per tahun. Nilai ini jauh lebih kecil daripada yang diterima dari alam (kira-kira 2 milisievert per tahun) atau 1/400 nilai radiasi dari alam.
Radiasi yang dipancarakan dari PLTN sesungguhnya lebih kecail daripada radiasi dari pembangkit listrik berbahan bakar batubara maupun minyak. Radiasi yang diterima orang per orang di sekitar PLT Batubara bisa 3 kali lebih tinggi daripada yang diterima dari PLTN.


Jumat, 10 April 2015

alat penukar kalor

ALAT PENUKAR KALOR


Alat penukar panas (heat exchanger) adalah suatu alat yang digunakan untuk memindahkan panas antara dua buah fluida atau lebih yang memiliki perbedaan temperature yaitu fluida yang bertemperatur tinggi kefluida yang bertemperatur rendah. Perpindahan panas teesebut baik secara langsung maupun secara tidak langsung. Pada kebanyakan sistem kedua fluida ini tidak mengalami kontak langsung. Kontak langsung alat penukar kalor terjadi sebagai contoh pada gas kalor yang terfluidisasi dalam cairan dingin untuk meningkatkan temperatur cairan atau mendinginkan gas. Alat penukar panas banyak digunakan pada berbagai instalasi industri, antara lain pada : boiler, kondensor, cooler, cooling tower. Sedangkan pada kendaraan kita dapat menjumpai radiator yang fungsinya pada dasarnya adalah sebagai alat penukar panas. Tujuan perpindahan panas tersebut di dalam proses industri diantaranya adalah :
a) Memanaskan atau mendinginkan fluida hingga mencapai temperature tertentu yang dapat memenuhi persyaratan untuk proses selanjutnya, seperti pemanasan reaktan atau pendinginan produk dan lain-lain.
 b) Mengubah keadaan (fase) fluida : destilasi, evaporasi, kondensassi dan lain-lain. Proses perpindahan panas tersebut dapat terjadi secara langsung maupun tidak langsung. Maksudnya adalah :
 1) Pada alat penukar kalor yang langsung, fluida yang panas akan bercampur secara langsung dengan fluida dingin (tanpa adanya pemisah) dalam suatu bejana atau ruangan tertentu. Contohnya adalah clinker cooler dimana antara clinker yang panas dengan udara pendingin berkontak langsung. Contoh yang lain adalah cooling tower untuk mendinginkan air pendingin kondenser pada instalasi mesin pendingin sentral atau PLTU, dimana antara air hangat yang didinginkan oleh udara sekitar saling berkontak seperti layaknya air mancur.
 2) Pada alat penukar kalor yang tidak langsung, fluida panas tidak berhubungan langsung dengan fluida dingin. Jadi proses perpindahan panas itu mempunyai media perantara, seperti pipa, pelat atau peralatan jenis lainnnya. Untuk meningkatkan efektivitas pertukaran energi, biasanya bahan permukaan pemisah dipilih dari bahan-bahan yang memiliki konduktivitas termal yang tinggi seperti tembaga dan aluminium. Contoh dari penukar kalor seperti ini sering kita jumpai antara lain radiator mobil, evaporator AC. Pertukaran panas secara tidak langsung terdapat dalam beberapa tipe dari penukar kalor diantaranya tipe plat, shell and tube, spiral dll. Pada kebanyakan kasus penukar kalor tipe plat mempunyai efektivitas perpindahan panas yang lebih bagus. Klasifikasi Alat Penukar Kalor Adapun klasifikasi dari alat penukar kalor dapat dibagi dalam beberapa kelompok yaitu : - Berdsarkan konstruksinya
 1) Tabung (tubular)
2) Plate-Type
3) Extended Surface
4) Regenerative
- Berdasarkan pengaturan aliran
 1) Single Pass
2) Multi Pass
- Berdasarkan jenis aliran
1) Aliran Berlawanan Arah (Counter Flow)
2) Alira Sejajar (Parallel Flow)
3) Aliran Silang (Cross Flow)
4) Aliran Terpisah (Split Flow)
5) Aliran Bercabang (Divide Flow)
 - Berdasarkan banyaknya laluan :
1) Seluruh Cross-counter flow
2) Seluruh cross-parallel flow
3) Parallel counter flow
- Berdasarkan mekanisme perpindahan panas
1) Konveksi satu fasa (dengan konveksi paksa atau alamiah)
2) Konveksi dua fasa (dengan konveksi paksa atau alamiah)
 3) Kombinasi perpindahan panas
- Berdasarkan fungsinya dapat digolongkan pada beberapa nama:
1) Exchanger: Memanfaatkan perpindahan kalor diantara dua fluida proses (steam dan air pendingin tidak termasuk sebagai fluida proses, tetapi merupakan utilitas).
2). Heater: Berfungsi memanaskan fluida proses, dan sebagai bahan pemanas alat ini menggunakan steam.
 3) Cooler: Berfungsi mendinginkan fluida proses, dan sebagai bahan pendingin digunakan air.
 4) Condenser: Berfungsi untuk mengembunkan uap atau menyerap kalor laten penguapan
 5) Boiler : Berfungsi untuk membangkitkan uap.
 6) Reboiler : Berfungsi sebagai pensuplai kalor yang diperlukan bottom produk pada distilasi. Steam biasanya digunakan sebagai media pemanas.
7) Evaporator: Berfungsi memekatkan suatu larutan dengan cara menguapkan airnya. 8) Vaporizer: Berfungsi memekatkan cairan selain dari air.
 Adapun bentuk dari alat penukar kalor pada industri antara lain :
1. Alat Penukar Kalor Shell dan Tube
2. Alat Penukar Kalor Coil dan Box
3. Alat Penukar Kalor Double dan Pipe
4. Alat Penukar Kalor type Plate
Klasifikasi penukar kalor berdasarkan susunan aliran fluida Yang dimaksud dengan susunan aliran fluida di sini adalah berapa kali fluida mengalir sepanjang penukar kalor sejak saat masuk hingga meninggalkannya serta bagaimana arah aliran relatif antara kedua fluida (apakah sejajar/parallel, berlawanan arah/counter atau bersilangan/cross).
a.    Pertukaran panas dengan aliran searah (co-current/parallel flow) yaitu apabila arah aliran dari kedua fluida di dalam penukar kalor adalah sejajar. Artinya kedua fluida masuk pada sisi yang satu dan keluar dari sisi yang lain mengalir dengan arah yang sama. Karakter penukar panas jenis ini temperatur fluida yang memberikan energi akan selalu lebih tinggi dibanding yang menerima energi sejak mulai memasuki penukar kalor hingga keluar


b. Pertukaran panas dengan aliran berlawanan arah (counter current / flow) yaitu bila kedua fluida mengalir dengan arah yang saling berlawanan dan keluar pada sisi yang berlawanan. Pada tipe ini masih mungkin terjadi bahwa temperatur fluida yang menerima panas (temperatur fluida dingin) saat keluar penukar kalor (T4) lebih tinggi dibanding temperatur fluida yang memberikan kalor (temperatur fluida panas) saat meninggalkan penukar kalor. 


c. Pertukaran panas dengan aliran silang ( cross flow ) Artinya arah aliran kedua fluida saling bersilangan. Contoh yang sering kita lihat adalah radiator mobil dimana arah aliran air pendingin mesin yang memberikan energinya ke udara saling bersilangan. Apabila ditinjau dari efektivitas pertukaran energi, penukar kalor jenis ini berada diantara kedua jenis di atas. Dalam kasus radiator mobil, udara melewati radiator dengan temperatur rata-rata yang hampir sama dengan temperatur udara lingkungan kemudian memperoleh panas dengan laju yang berbeda di setiap posisi yang berbeda untuk kemudian bercampur lagi setelah meninggalkan radiator sehingga akan mempunyai temperatur yang hampir seragam
 

Heat Exchanger Tipe Plat Heat exchanger tipe plat adalah jenis penukar panas yang menggunakan pelat logam untuk mentransfer panas antara dua cairan. Ini memiliki keuntungan besar atas suatu penukar panas konvensional dalam bahwa cairan yang terkena luas permukaan jauh lebih besar karena cairan menyebar di plat. Ini memfasilitasi transfer panas, dan sangat meningkatkan kecepatan perubahan suhu. Plat penukar panas yang sekarang umum dan versi dibrazing sangat kecil yang digunakan dalam air panas bagian dari jutaan kombinasi boiler. Konsep di balik penukar panas adalah penggunaan pipa atau pembuluh penahanan lain untuk panas atau dingin satu cairan dengan mentransfer panas antara itu dan cairan lain. Dalam kebanyakan kasus, penukar terdiri dari pipa melingkar berisi satu fluida yang melewati ruang berisi cairan lain. Dinding pipa biasanya terbuat dari logam, atau zat lain dengan konduktivitas panas yang tinggi, untuk memfasilitasi pertukaran, sedangkan casing luar ruang yang lebih besar adalah terbuat dari plastik atau dilapisi dengan isolasi termal, untuk mencegah panas dari melarikan diri dari exchanger. Kontruksi Heat Exchanger Tipe Plat Pelat penukar panas (PHE) adalah desain khusus cocok untuk mentransfer panas antara cairan menengah dan tekanan rendah. Dilas, semi-dilas dan penukar panas dibrazing digunakan untuk pertukaran panas antara cairan bertekanan tinggi atau di mana produk yang lebih kompak diperlukan. Untuk konstruksi heat exchanger tipe plat yang dibuat, dapat ditunjukan pada gambar dibawah; 

Minggu, 05 April 2015

Sabtu, 04 April 2015

PENERAPAN KALOR

Aplikasi Kalor Dalam kehidupan Sehari-hari

1.      Termos
Termos berfungsi untuk menyimpan zat cair yang berada di dalamnya agar tetap panas dalam jangka waktu tertentu. Termos dibuat untuk mencegah perpindahan kalor secara konduksi, konveksi, maupun radiasi. Dinding termos dibuat sedemikian rupa, untuk menghambat perpindahan kalor pada termos, yaitu dengan cara:
permukaan tabung kaca bagian dalam dibuat mengkilap dengan lapisan perak yang berfungsi mencegah perpindahan kalor secara radiasi dan memantulkan radiasi kembali ke dalam termos,
dinding kaca sebagai konduktor yang jelek, tidak dapat memindahkan kalor secara konduksi, dan
ruang hampa di antara dua dinding kaca, untuk mencegah kalor secara konduksi dan agar konveksi dengan udara luar tidak terjadi.

2.      Setrika
Setrika terbuat dari logam yang bersifat konduktor yang dapat memindahkan kalor secara konduksi ke pakaian yang sedang diseterika. Adapun, pegangan seterika terbuat dari bahan yang bersifat isolator.

3.      Panci Masak

Panci masak terbuat dari bahan konduktor yang bagian luarnya mengkilap. Hal ini untuk mengurangi pancaran kalor. Adapun pegangan panci terbuat dari bahan yang bersifat isolator untuk menahan panas.

PRINSIP KERJA BOILER



BOILER

Boiler adalah sebuah wadah tertutup berisi air atau fluida lain untuk dipanaskan. Sekalipun sebuah boiler tidak harus berfungsi untuk mendidihkan fluida, namun kita lebih familiar dengan boiler yang berfungsi untuk mendidihkan air sehingga memproduksi uap air. Sehingga pada umumnya kita lebih memahami bahwa boiler adalah sebuah alat untuk memproduksi uap air. 



20140622-103716 AM-38236673.jpg

Prinsip kerja boiler sebenarnya cukup sederhana sama seperti pada saat kita sedang mendidihkan air menggunakan panci. Proses pendidihan air tersebut akan selalu diiringi proses perpindahan panas yang melibatkan bahan bakar, udara, material wadah air, serta air itu sendiri. Proses perpindahan panas ini mencakup tiga jenis perpindahan panas yang sudah sangat kita kenal yakni konduksi, konveksi, dan radiasi.



20140623-012949 PM-48589971.jpg

Pada boiler pipa air di atas misalnya, sumber panas didapatkan dari pembakaran bahan bakar di dalamfurnace. Energi panas ini sebagian akan terpancar secara radiasi ke pipa-pipa evaporator sehingga memanaskan pipa-pipa tersebut. Panas yang terserap oleh permukaan pipa akan secara konduksi berpindah ke sisi permukaan dalam pipa. Di dalam pipa, mengalir air yang terus-menerus menyerap panas tersebut. Proses penyebaran panas antar molekul air di dalam aliran ini terjadi secara konveksi. Perpindahan panas konveksi antar molekul air, seakan-akan menciptakan aliran fluidatersendiri terlepas dengan aliran air di dalam pipa-pipa boiler.


20121216-104318 PM.jpg


 Gas hasil pembakaran yang mengandung energi panas akan terus mengalir mengikuti bentuk boiler hingga ke sisi keluaran. Di sepanjang perjalanan, panas yang terkandung di dalam gas buang akan diserap oleh permukaan tubing boiler dan diteruskan secara konduksi ke air di dalam pipa. Secara bertahap, air akan berubah fase menjadi uap basah (saturated steam) dan dapat berlanjut hingga menjadi uap kering (superheated steam).

20140626-103149 AM-37909095.jpg